

Communication

Subscriber access provided by University of Birmingham | http://www.library.bham.ac.uk

Structure of a Missing-Caged Metallofullerene: La@C

Haruhito Kato, Atsushi Taninaka, Toshiki Sugai, and Hisanori Shinohara J. Am. Chem. Soc., 2003, 125 (26), 7782-7783• DOI: 10.1021/ja0353255 • Publication Date (Web): 10 June 2003 Downloaded from http://pubs.acs.org on March 29, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 25 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 06/10/2003

Structure of a Missing-Caged Metallofullerene: La₂@C₇₂

Haruhito Kato,[†] Atsushi Taninaka,[†] Toshiki Sugai,[†] and Hisanori Shinohara*,^{†,‡}

Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan, and CREST, Japan Science Technology Corporation, c/o Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan

Received March 26, 2003; E-mail: noris@cc.nagoya-u.ac.jp

Endohedral metallofullerenes¹ have attracted much attention during the past decade not only for their structural/electronic novelty but for promising biomedical applications such as MRI contrast agents.^{2–4} Recently, it has been demonstrated that otherwise unstable species such as metal clusters,⁵ carbides,⁶ and nitrides⁷ can safely be entrapped in several fullerene cages. This shows that the endohedral hollow space of fullerenes can provide a unique nanometer-scale field for stabilizing unstable species. Furthermore, even fullerene cages which do not obey the isolated-pentagon rule (IPR)⁸ having "fused-pentagon" can well be stabilized by encapsulation of metal atoms, that is, Sc₂@C₆₆⁹ and Sc₃N@C₆₈.¹⁰

In contrast, C_{72} and C_{74} fullerenes (the so-called "missing fullerenes"¹¹), which have never been isolated due to their structural instability even though they have D_{6d} and D_{3h} IPR structures, respectively, are much stabilized and even isolated only when they form metallofullerenes such as $M_n@C_{72}$ (n = 0,¹² n = 1 for M = Ca,¹¹ n = 2 for M = Sc,¹³ La,¹⁴ and Ce¹⁵) and $M_n@C_{74}$ (n = 0,¹⁶ n = 1 for Ca,^{11,17} Sm,¹⁸ and Eu,^{17,19} n = 2 for Sc²⁰). However, the structures of $M_n@C_{72}$ and $M_n@C_{74}$ fullerenes have not been elucidated yet. Here, we present the first structural analysis of the C_{72} fullerene encapsulating two La atoms, that is, La₂@C₇₂, by high-resolution ¹³C NMR.

Details of the synthesis and isolation of metallofullerenes were described elsewhere.¹ Briefly, soot containing La₂@C₇₂ and other La-fullerenes were produced by DC arc discharge (500 A, 20 V) of La/graphite composite rods (15 × 15 × 300 mm, 1.6 at. % of La, Toyo Tanso Co.) under He flow (15 L/min) conditions. The isolation of La₂@C₇₂ was achieved by the two-stage HPLC method.^{1,14} The purity of La₂@C₇₂ was >99%, as was revealed by both laser-desorption TOF mass spectrometry and HPLC analyses. La₂@C₇₂ is fairly stable under ambient conditions. This suggests that the HOMO–LUMO gap of La₂@C₇₂ is large, which is consistent with the onset of UV–vis–NIR absorption spectra¹⁵ previously reported.

The ¹³C NMR spectrum of La₂@C₇₂ in CS₂ solution presents 18 lines in a diamagnetic chemical shift range from 130 to 160 ppm (cf., Figure 1). The intensities of line numbers 10 (146.0 ppm), 15 (148.7 ppm), 16 (150.0 ppm), 17 (150.3 ppm), and 18 (158.1 ppm) are smaller than those of other lines. The line widths of these lines are, however, larger than the others (cf., Figure 1, insert), indicating the presence of 18 lines of equal intensity. Transverse relaxation times (T_2) of these lines could be faster than those of the other lines presumably because of somewhat localized electron transfers from La atoms to the C₇₂ cage and/or of additional interactions other than the charge transfer.⁹

A ¹³⁹La NMR spectrum of a mixture of La₂@C₇₂ and La₂@C₈₀ (I_h) (at 333.6 K and calibrated from ¹H NMR spectra of ethylene

Figure 1. ¹³C NMR spectrum of La₂@C₇₂ in CS₂ (2.0 mg of Cr(acac)₃ as relaxant, CDCl₃ lock) with 58 550 scans at room temperature using a JEOL Alpha spectrometer at 150 MHz. The ¹³C NMR spectroscopic line position was referenced with respect to that of CS₂ at 192.3 ppm.

Figure 2. ¹³⁹La NMR spectrum of a mixture of La₂@C₇₂ and La₂@C₈₀ (I_h) in *o*-dichlorobenzene- d_4 with 200 704 scans at 333.6 K using a JEOL Alpha spectrometer at 84.65 MHz.

glycol²¹) is shown in Figure 2. The line position of ¹³⁹La NMR was calibrated with respect to that of La₂@C₈₀ at -402.6 ppm.²² A single broad signal of La₂@C₇₂ was observed at -575.6 ppm, indicating that the two La atoms are geometrically equivalent inside the C₇₂ cage. The broader ¹³⁹La NMR line width of La₂@C₇₂ than that of La@C₈₂ may indicate that La₂@C₇₂ has lower symmetry and that transverse relaxation times (*T*₂) of the ¹³⁹La nuclear spin of La₂@C₇₂ are faster than those of La₂@C₈₀ (*I_h*).

The observed ¹³C NMR spectrum pattern of La₂@C₇₂ does not correspond to that of the only IPR structure of C₇₂ with D_{6d} symmetry. The cage structure of La₂@C₇₂ does not satisfy IPR.

Although there are a number of ways to violate IPR, the most straightforward way to do this is to generate the so-called "fused-pentagon"⁹ where pentagons are adjacent with each other. The (very low field) NMR peak at 158.1 ppm suggests the presence of fused-pentagons.^{9,10,20} For 72-atom carbon cages with hexagonal and pentagonal faces, there are in total 11 189 possible (non-IPR) structural isomers.²³ Considering the observed 18-lines, 24 structural

[†] Department of Chemistry and Institute for Advanced Research, Nagoya University.
[‡] CREST, Nagoya University.

Figure 3. Structures of proposed #10611 and #10958 for La2@C72, showing top views (left, a and c) and side views (right, b and d).

isomers of C₇₂ with D₂ symmetry can satisfy the observed ¹³C NMR pattern. Furthermore, when only the least number of fusedpentagons (i.e., two two-fused pentagons) is employed for C₇₂ as in the case of Sc2@C66,9 only two such non-IPR structures are possible, that is, #10611 and #10958 (see Figure 3).

As was experimentally shown in the $Sc_2@C_{66}^9$ case, in La₂@C₇₂ we think also that each of the two two-fused pentagons can be stabilized by electron transfers from encaged La atoms and other interactions which are adjacent to these fused-pentagons. The rest of the 22 non-IPR structures for C72 possess much strained structures such as four two-fused pentagons, six two-fused pentagons, two six-fused pentagons, and so on, which obviously have substantially lower stability than the two two-fused pentagons case.

In general, HOMO-LUMO gaps of fullerenes are consistent with the onset of UV-vis-NIR absorption spectra of the fullerenes. The HOMO-LUMO gaps of the two C72 structural candidates, structures #10611 and #10958, were estimated as C_{72}^{6-} (where 6 electrons are transferred from La atoms to the C72 cage14) at RHF/ 3-21G with use of the Gaussian 98 program basis set for carbon atoms. The calculated HOMO-LUMO gap of C72 (#10611) is 0.2001 hartree, which is much larger than that (0.1666 hartree) of C_{72} (#10958). Also, the stability of C_{72} (#10611) is much larger than that of C_{72} (#10985). We, therefore, suggest that $La_2@C_{72}$ has the non-IPR D_2 -C₇₂ (#10611) cage structure in which each La atom is situated close to one of the two-fused pentagons. Because this D_2 -C₇₂ (#10611) structure has chiral isomers, further HPLC separation by using the chiral stationary phase²⁴ and asymmetric osmylation²⁵ may lead to isolation of enantiomers of $La_2@C_{72}$.

Acknowledgment. H.S. thanks the CREST Program on Novel Carbon Nanotubes by JST. H.K. thanks the Japan Society for the Promotion of Science for a Research Fellowship for Young Scientists. The La2@C72 ¹³C NMR spectroscopic measurements were done at the Chemical Instrument Center, Nagoya University.

Supporting Information Available: Mass, UV-vis-NIR absorption spectra, ¹³C NMR spectra (C_6D_6 and *o*-dichlorobenzene- d_4 lock at room temperature and 333.6 K), and ¹³⁹La NMR spectra (o-dichlorobenzene- d_4) of La₂@C₇₂ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Shinohara, H. Rep. Prog. Phys. 2000, 63, 843.
- Cagle, D. W.; Alford, J. M.; Tien, J.; Wilson, L. J. In Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington, NJ, 1997; Vol. 4, p 361.
 Mikran M., K. M., Narashi M. Karasawa Y. Mang
- (3) Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Bioconjugate Chem. 2001, 12, 510.
- (4) Kato, H.; Kanazawa, Y.; Okumura, M.; Taninaka, A.; Yokawa, T.; Shinohara, H. J. Am. Chem. Soc. 2003, 125, 4391.
- (5)Takata, M.; Nishibori, E.; Sakata, M.; Inakuma, M.; Yamamoto, E.; Shinohara, H. Phys. Rev. Lett. 1999, 83, 2214.
- (6) Nishibori, E.; Takata, M.; Sakata, M.; Taninaka, A.; Shinohara, H. Angew. Chem., Int. Ed. 2001, 40, 2998.
- Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maita, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. *Nature* 1999, 401, 55.
 (8) Kroto, H. W. *Nature* 1987, 329, 529.
- Wang, C.-R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. *Nature* **2001**, 408, 426. Takata, M.; Nishibori, E.; Wang, C. R.; Sakata, M.; Shinohara, H.
- (10) Stevenson, S.; Fowler, P. W.; Heine, T.; Duchamp, J. C.; Rice, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. *Nature* 2001, 408, 428.
 (11) Wan, T. S. M.; Zhang, H.-W.; Nakane, T.; Xu, Z.; Inakuma, M.; Shinohara, H.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1998, 120, 6896.
- (12) Mass spectral measurements indicate the presence of C₇₂, but extraction and separation of C72 have not yet been done. The existence of a peak corresponding to C72 does not necessarily indicate the actual presence of the fullerene because C_{72} fragments from other higher fullerenes are oftentimes produced at the time of ionization.
- Wang, C.-R.; Shinohara, H., to be published.
- Stevenson, S.; Burbank, P.; Harich, K.; Sun, Z.; Dorn, H. C.; van Loosdrecht, P. H. M.; deVries, M. S.; Salem, J. R.; Kiang, C.-H.; Johnson, R. D.; Bethune, D. S. J. Phys. Chem. A 1998, 102, 2833.
 (15) Dunsch, L.; Bartl, A.; Georgi, P.; Kuran, P. Synth. Met. 2001, 121, 1113.
- C₇₄ can be extracted by basic organic solvents such as pyridine and DMF. (16)The isolation of the C74 has not yet been achieved, because C74 is insoluble in HPLC solvents such as toluene and CS2
- (17) Fujii, R.; Kodama, T.; Miyake, Y.; Suzuki, S.; Nishikawa, H.; Ikemoto, 1; Kikuchi, K.; Achiba, Y., to be published. (18) Okazaki, T.; Lian, Y.; Gu, Z.; Suenaga, K.; Shinohara, H. *Chem. Phys.*
- Lett. 2000, 320, 435.
- (19) Kuran, P.; Krause, M.; Bartl, A.; Dunsch, L. Chem. Phys. Lett. 1998, 292, 580.
- (20) Dorn, H. C.; Stevenson, S.; Burbank, P.; Harich, K.; Sun, Z.; Glass, T.; Anderson, M.; Bethune, D. S.; Sherwood, M. In Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical (21) Amman, C.; Meier, P.; Merbach, A. E. J. Magn. Reson. 1982, 46, 319.
- Akasaka, T.; Nagase, S.; Kobayashi, K.; Waelchli, W.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1643.
- (23) Kobayashi, K.; Nagase, S.; Yoshida, M.; Osawa, E. J. Am. Chem. Soc. 1997, 119, 12693.
- Yamamoto, C.; Hayashi, T.; Okamoto, Y.; Ohkubo, S.; Kato, T. Chem. Commun. 2001, 925 (25) Hawkins, J. M.; Meyer, A. Science 1993, 260, 1918.

JA0353255